Toluene dioxygenase-catalysed oxidation route to angular cismonohydrodiols and other bioproducts from bacterial metabolism of 1,2-dihydrobenzocyclobutene and derivatives

Derek R. B oyd, ${ }^{\text {, a }}$ N arain D. Sharma, ${ }^{\text {a }}$ Timothy A. E vans, ${ }^{\text {a }}$ M elanie G roocock, ${ }^{\text {a }}$ J ohn F. M alone, ${ }^{\text {a P Paul J. Stevenson }}{ }^{\text {a }}$ and H oward D alton ${ }^{*, b}$
${ }^{\text {a }}$ School of Chemistry, The Queen's U niversity of Belfast, Belfast, UK BT9 5A G
${ }^{\text {b }}$ D epartment of Biological Sciences, The U niversity of Warwick, C oventry, UK CV 4 7AL

Abstract

A mutant strain (U V 4) of the soil bacterium P seudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene $12 \dagger$ and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R ,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R ,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase H PLC , N M R and CD spectroscopy, and stereochemical correlation. X-R ay crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-M TPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.

Abstract

Introduction The initially formed cis-dihydrodiol bioproducts from the bacterial metabolism of mono- and poly-cyclic arenes generally result from dioxygenase-catalysed cis-dihydroxylation at unsubstituted arene bonds. ${ }^{1,2}$ Thus biotransformation of monosubstituted benzene substrates normally occurs by oxidation at the 2,3-bond to yield cis-dihydrodiols (e.g. type $1, R=\mathrm{Me}, \mathrm{Et}, \mathrm{F}, \mathrm{Cl}$, $\left.\mathrm{CF}_{3}, \mathrm{CH}_{2} \mathrm{OAc}\right){ }^{2}$ cis-Diol formation at a substituted 1,2-bond (ipso bond) in monosubstituted benzene substrates has rarely been observed. An exception was found during the bacterial metabolism of benzoic acid where oxidation occurred at the 1,2-bond to yield a cis-diol of type $2 .{ }^{3}$ Polycyclic aromatic hydrocarbon metabolism by bacteria has similarly been found to proceed via cis-diol formation at unsubstituted carboncarbon bonds (type 3) 1,4,5 rather than at a substituted (type 4) or an angular (type 5) carbon-carbon bond. M utant strains of either Pseudomonas putida (U V4), ${ }^{2}$ or Beijerinckia (B8/36), ${ }^{4}$ also described as Sphingomonas yanoikuyae (B8/36), ${ }^{5}$ lack the cis-dihydrodiol dehydrogenase enzyme responsible for catechol formation, and therefore have made available cis-diols (type 1 and 3) in sufficient quantities for use in chiral synthesis and kinetic studies.

Polycyclic arenes have been shown to undergo oxidative bacterial metabolism via angular cis-diols (cis-monohydrodiols) using strains of both Brevibacterium ${ }^{6,7}$ and P seudomonas putida. ${ }^{8,9}$ The stable angular cis-diols $6,{ }^{6,7,9} 7,{ }^{8} \mathbf{9}^{\mathbf{8}}$ and triol $\mathbf{8}^{8}$ metabolites were isolated and subsequently identified by spectroscopic methods. U nstable angular cis-diols have also been proposed as initial metabolites of dibenzofuran (e.g. cis-monohydrodiol 10 from a Pseudomonas species), ${ }^{6}$ and dibenzo[1,4]dioxine (e.g. cis-monohydrodiol 11 from a Staphylococcus auriculans strain). ${ }^{10}$

While the absolute configurations of a large number of cisdihydrodiols from monocyclic ${ }^{1,2}$ and polycyclic ${ }^{1,4,5}$ aromatic

[^0]

1

4

7

10

2

5

8

11

3

6

9
hydrocarbons are known, none of the angular cis-diol metabolite series, e.g. 6-9, have yet been unequivocally assigned. The structure, absolute configuration and enantiopurity of the alcohol 13, cis-diols 7, 14, keto alcohol 17 and triol 8 metabolites of 1,2 -dihydrobenzocyclobutene $\mathbf{1 2}$, the structure of cisdiol 16, and the cis-monohydrodiol metabolite 9 of biphenylene 33 (several of which were reported in a preliminary communication ${ }^{8}$) are now discussed in detail. The results of the study on the metabolic sequence for biotransformation of 1,2-dihydrobenzocyclobutene $\mathbf{1 2}$, in P. putida U V 4, using both single enanti-
omers of the bacterial metabolite 1,2-dihydrobenzocyclobuten-1-ol $\mathbf{1 3}$ as substrate, are also included herein.

Results and discussion

Addition of 1,2-dihydrobenzocyclobutene $\mathbf{1 2}$ to growing cultures of P. putida UV4 yielded a mixture of seven metabolites consisting of 1,2 -dihydrobenzocyclobuten-1-one 15, 1-oxo-2-hydroxy-1,2-dihydrobenzocyclobutene 17, 1,2-dihydrobenzo-cyclobuten-1-ol 13, cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, (1R ,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7, (2R ,3 S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and ($15,2 \mathrm{~S}, 8 \mathrm{~S}$)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 (Scheme 1). A mong

Scheme 1

the metabolites which could be isolated in pure form by an initial preparativelayer chromatography (PLC) separation [silica gel, EtOA c-hexane ($1: 1$)] were ketone $15\left(R_{f} 0.90,2 \%\right.$), keto alcohol 17 ($\mathrm{R}_{\mathrm{f}} 0.80,1 \%$), alcohol $13\left(\mathrm{R}_{\mathrm{f}} 0.75,33 \%\right)$ and triol 8 ($R_{f} 0.09,9 \%$). ${ }^{1} \mathrm{H} N \mathrm{~N}$ R A nalysis of a further major fraction (R_{f} $0.34)$, indicated the presence of three cis-diols. PLC Separation by multiple elution of this mixture [silica gel, EtOA c-hexane (1:4)] yielded a high R_{f} component which was identified as cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16 (9\%) and a low R_{f} band containing two diols. Semi-preparative reversed-phase HPLC separation of the latter diol mixture [Zorbax ODS column, $\mathrm{H}_{2} \mathrm{O}-\mathrm{M} \mathrm{eOH}(70: 30), a=1.9$] yielded a pure diol from the early, more polar, fractions. This very stable metabolite was identified as (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7 (18\%). Thelater, Iess polar, H PLC fractions afforded an unstable diol which was identified as (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 ($0.14 \mathrm{~g}, 13 \%$).

1,2-D ihydrobenzocyclobuten-1-one 15 and 1,2-dihydro-benzocyclobuten-1-ol 13 were readily identified as metabolites of 1,2 -dihydrobenzocyclobutene 12 by comparison of their chromatographic and spectral characteristics with authentic samples and with the literature data. ${ }^{11,12}$ The enantiomeric excess (ee) of the alcohol metabolite 13 ($[a]_{\mathrm{D}}-16$) was estimated to be ca. 20% by chiral stationary phase (CSP) H PLC. The ee value was confirmed by ${ }^{1} H N M R$ analysis of the derived methoxy(trifluoromethyl)(phenyl)acetate (M TPA) derivative. Using a semi-preparative Chiralcel OB column, small samples (ca. 0.10 g) of the early ($[a]_{\mathrm{D}}-88$) and late ($[a]_{\mathrm{D}}+88$) eluting enantiomers of 1,2-dihydrobenzocyclobuten-1-ol 13 wereseparated by HPLC for use as substrates.

The absolute configuration of the enzymatically formed (-)-1,2-dihydrobenzocyclobuten-1-ol 13 ($[a]_{D}-16$) was determined by converting it to the corresponding acetate 18
$\left([a]_{\mathrm{D}}-8\right)$, followed by oxidative cleavage of the aryl ring with ruthenium tetroxide to furnish acetoxysuccinic acid 20 (Scheme 2). The crude diacid 20, on treatment with diazomethane and subsequent PLC purification, gave dimethyl acetoxysuccinate 22 ($[a]_{\mathrm{D}}-2.2$). The latter compound was assigned as (S) absolute configuration by comparison with an authentic sample of 22 ($[a]_{\mathrm{D}}-11$), obtained by esterification of (S)-hydroxysuccinic acid [L-(-)-malic acid] $\mathbf{2 4}$ ([$a]_{\mathrm{D}}-28$) via the dicarboxylic acid 20 and therefore thestereochemical correlation sequence shown in Scheme 2 unequivocally establishes the absolute

Scheme 2 Reagents: i, $(\mathrm{MeCO})_{2} \mathrm{O}$-pyridine; ii, $\mathrm{RuO}_{2}-\mathrm{NalO}_{4}$; iii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$
configuration of the (-)-1,2-dihydrobenzocyclobuten-1-ol metabolite 13 as (S).
The toluene dioxygenase (TDO)-catalysed oxidation of benzocycloalkanes in P. putida UV4 was consistently found to yield enantiopure benzylic alcohol metabolites of (R) configuration where five-, six- and seven-membered non-aromatic rings were present. ${ }^{8} \mathrm{An}(\mathrm{R})$ configuration was assumed for metabolite 13 in the preliminary report ${ }^{8}$ based upon the above trend and the expectation that a similar elution sequence, using the same CSPH PLC system, would be found for all (R) benzylic alcohol metabolites from benzocycloalkanes of differing ring size. The 1,2-dihydrobenzocyclobuten-1-ol metabolite 13 from P. putida UV4 was found to be exceptional in showing (a) a reverse elution sequence of enantiomers on CSPH PLC, (b) a relatively low ee (20%) and (c) a reverse absolute configuration (S), compared to benzocycloalkanes with larger non-aromatic rings.

1-0xo-2-hydroxy-1,2-dihydrobenzocyclobutene 17 ($[a]_{D}-36$) was isolated as a very minor (1\%) metabolite of 1,2-dihydrobenzocyclobutene 12 and was found to have an ee of 72% by CSPH PLC analysis. This ee value was confirmed when enantiopure samples of the keto alcohol 17 ($[a]_{\mathrm{D}}-50$ and +51) were separated on a semi-preparative Chiralcel OB column. The absolute configuration of keto alcohol (-)-17 was found to be (2R) by conversion to (S)-1,2-dihydrobenzocyclobuten-1-ol 13.
The structure and relative stereochemistry of metabolite 16 was confirmed as cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene by a similar acylation and oxidation cleavage sequence to that used for 1,2-dihydrobenzocyclobuten-1-ol 13 (Scheme 2). Thus metabolite 16 was acetylated to yield cis-1,2-diacetoxy-1,2-dihydrobenzocyclobutene 19 which after oxidation $\left(\mathrm{RuO}_{4}\right)$ gave meso-2,3-diacetoxysuccinic acid 21. Dimethylation of
diacid $21\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ gave meso-dimethyldiacetoxysuccinate 23 whose structure was confirmed by its synthesis starting from meso-tartaric acid 25 (Scheme 2).

The structure of the angular cis-diol metabolite $\mathbf{7}$ was based mainly upon ${ }^{1} \mathrm{H} N M \mathrm{R}$ and mass spectroscopy, and chiroptical (CD) data. The absence of vicinal coupling between the protons $2-\mathrm{H}$ and $3-\mathrm{H}$ is consistent with a dihedral angle of ca. 90°, and an axial orientation for $2-\mathrm{H}$. Thus the equatorial secondary OH and axial tertiary OH groups must adopt a cis-configuration in common with dihydrodiols formed from TDO-catalysed oxidation of arenes using P. putida UV4. F urther evidence for the angular cis-diol structure of metabolite $\mathbf{7}$ was provided by esterification of one hydroxy group. Treatment with both (R)and (S)-forms of M TPA -chloride yielded only the corresponding mono-M TPA esters 26 due to esterification of the less hindered secondary OH group. ${ }^{1} \mathrm{H}$ NMR Analysis of the M TPA esters 26 confirmed that the angular cis-diol $\mathbf{7}$ was enantiopure ($>98 \%$ ee). Treatment of the cis diol $\mathbf{7}$ with the less

26

28 ($\mathrm{R}=\mathrm{H}$)
29 ($\mathrm{R}=\mathrm{MTPA}$)

31

32
bulky reagent, (1S)-camphanic acid chloride, resulted in diesterification of both secondary and tertiary OH groups to yield a crystalline dicamphanate derivative 27 ($[a]_{\mathrm{D}}-229$). X-Ray crystallographic analysis of dicamphanate 27 (Fig. 1) confirmed the cis-relationship between the equatorial OH group at $\mathrm{C}-2$ and the axial OH at $\mathrm{C}-1$ in the parent diol 7 and also confirmed the orthogonal relationship between protons $2-\mathrm{H}$ and $3-\mathrm{H}$ which had been suggested by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The absolute configuration is established as ($1 R, 2 S$) for compounds $\mathbf{2 7}$ and $\mathbf{7}$. The diene $C^{3}=C^{4}-C^{5}=C^{6}$ in ester 27 has helicity M with torsion angle $\tau=-15^{\circ}$.

The relative stability of the angular cis-diol 7 may account for the successful synthesis and isolation of the monoester 26 and diester $\mathbf{2 7}$ derivatives. The formation of these derivatives was noteworthy since earlier attempts to obtain either monoor di-M TPA derivatives directly from cis-dihydrodiol metabolites of monosubstituted benzenes or polycyclic aromatic hydrocarbons were unsuccessful due to their aromatization (dehydration). ${ }^{2}$

The third cis-diol metabolite of 1,2-dihydrobenzocyclobutene 12 proved to be very unstable and particular care was required during the H PLC purification step. The structure of diol $\mathbf{1 4}$ was established by ${ }^{1} \mathrm{H} N M R$ analysis and in particular from the vicinal coupling constant ($\mathrm{J}_{2,3} 6.5 \mathrm{~Hz}$) which was totally consistent with the cis-geometry. Due to the possibility of traces of achiral phenolic decomposition products being present in diol 14, the optical rotation observed ($[a]_{\mathrm{D}}-16$) should be regarded

Fig. 1 A projection of molecule 27

Fig. 2 A projection of molecule 29
as a minimal value. The structure and absolute stereochemistry of cis-dihydrodiol 14 was unequivocally established by formation of a stable cycloadduct with 4-phenyl-1,2,4-triazoline-3,5dione $28\left([a]_{D}+2\right)$. The di-M TPA derivatives 29 formed using (R)-M TPA 29a ($[a]_{D}+16$) and (S)-M TPA 29b ($[a]_{D}+32$), respectively, gave ${ }^{1} \mathrm{H}$ N M R spectral data which indicated that the cis-diol metabolite 14 was enantiomerically homogeneous (>98\% ee). The di-M TPA cycloadduct 29b ($[a]_{\mathbf{D}}+32$) gave suitable crystals for an X-ray crystal structure analysis (Fig. 2) which established the absolute configuration of the parent cis-diol $14\left([a]_{\mathrm{D}}-16\right)$ as $(2 R, 3 S)$. This configuration is identical to that found for the cis-dihydrodiol metabolites formed at unsubstituted bonds in both monosubstituted ${ }^{2}$ and orthodisubstituted ${ }^{13}$ benzene substrates. The relative instability of cis-dihydrodiol 14 compared with cis-monohydrodiol 7 could be accounted for by the weak electron donating character of the

8
Fig. 3 NOE interactions in the ${ }^{1} H$ NMR spectrum of triol 8

Fig. 4 CD Spectra of diol $7(---)$ and triol $8(--)$
alkyl substituents, leading to a faster rate of aromatization, ${ }^{14}$ and the ring strain associated with the cyclobutene ring.

The triol metabolite 8 proved to be the most polar of the bioproducts isolated after 1,2-dihydrobenzocyclobutene $\mathbf{1 2}$ was added to growing cultures of P. putida UV 4 . The ${ }^{1} H$ NM R and mass spectroscopy data of metabolite 8 indicated a structure similar to the angular cis-monohydrodiol 7. As protons $2-\mathrm{H}$ and $3-\mathrm{H}$ were uncoupled, an orthogonal relationship between them was present, as in cis-diol 7. The proximity of protons $7-\mathrm{H} \leftrightarrow 8-\mathrm{H}, 2-\mathrm{H} \leftrightarrow 8-\mathrm{H}(3.5 \AA)$ and $2-\mathrm{H} \leftrightarrow 3-\mathrm{H}$ was evident from their NOE interactions and from consideration of the X -ray structure of compound 27. The absence of any NOE interactions between protons $2-\mathrm{H}$ and $7-\mathrm{H}$ is entirely consistent with the triol 8 having OH groups on adjacent carbon atoms ($\mathrm{C}-2$, $\mathrm{C}-1$ and $\mathrm{C}-8, \mathrm{Fig} .3$). Further N M R studies allied to stereochemical correlation however, allowed the position and the relative/absolute configuration at $\mathrm{C}-8$ in triol 8 to be unequivocally established as (8S) by (i) comparison of the chemical shift value of the allylic proton $2-\mathrm{H}(\delta 4.53)$ relative to the non-allylic proton $8-\mathrm{H}$ ($\delta 4.17$), (ii) analysis of the $2 \mathrm{D}-\mathrm{COSY}^{1} \mathrm{H} N \mathrm{MR}$ spectrum indicating allylic coupling between $5-\mathrm{H}$ and $7-\mathrm{H}$, (iii) selective ${ }^{1} \mathrm{H}$-decoupling on $7-\mathrm{H}$ while observing the nondecoupled ${ }^{13} \mathrm{C}$ NMR spectrum where multiple collapse was observed on C-5, C-6 and C-8, and (iv) addition of (-)-(S)-1,2-dihydrobenzocyclobuten-1-ol 13 as substrate (see later). M etabolite 8 ($[a]_{\mathrm{D}}-197$) yielded di-M TPA esters 30 on treatment with (R)- and (S)-M TPA-CI due to selective esterification of the secondary OH groups on $\mathrm{C}-2$ and $\mathrm{C}-8 .{ }^{1} \mathrm{H} N \mathrm{MR}$ A nalysis of the di-M TPA esters $\mathbf{3 0}$ indicated that the triol $\mathbf{8}$ was optically pure ($>98 \%$ ee). The ($1 \mathrm{~S}, 2 \mathrm{~S}$) absolute configuration of triol 8 ($[a]_{\mathrm{D}}-197$) was deduced from its CD spectrum. The similarity of CD spectra of the (1 R, 2S)-diol 7 and triol 8 which both contain the diagnostic skew-diene chromophore is consistent with each having an identical (2S) configuration (Fig. 4).

The sequence of enzymecatalysed reactions involved in the conversion of 1,2-dihydrobenzocyclobutene $\mathbf{1 2}$ to triol $\mathbf{8}$ was studied using (S)- and (R)-1,2-dihydrobenzocyclobuten-1-ol 13 and racemic 1,2-dihydrobenzocyclobuten-1-ol 13, containing a deuterium atom at $\mathrm{C}-1$, as substrates with P. putida UV 4 . Addition of (S)-1,2-dihydrobenzocyclobuten-1-ol 13 resulted in its total biotransformation to yield triol 8 (8\%) and 1,2-dihydrobenzocyclobuten-1-one 15 (92%) as shown in Scheme 3. Since the stereochemistry of the angular cis-diol moiety in triol 8, derived from (S)-1,2-dihydrobenzocyclobuten-1-ol, has been

identified as $(15,2 S)$ from the CD spectrum, the configuration at all three chiral centres in triol 8 ($[a]_{D}-197$) will thus be ($15,25,85$) confirming the trans relationship between the OH group on $\mathrm{C}-8$ and the OH groups on $\mathrm{C}-1$ and $\mathrm{C}-2$. The sample of triol 8, isolated from the metabolism of racemic $\mathrm{C}-1$ deuteriated alcohol 13, was found to have totally retained the original deuterium atom at the C-8 position as shown by the ${ }^{1} \mathrm{H}$ N M R and mass spectroscopy data. This observation proves that the integrity of the chiral centre in (S)-1,2-dihydrobenzocyclo-buten-1-ol during its conversion to triol 8 is maintained.
(R)-1,2-Dihydrobenzocyclobuten-1-ol 13 proved to be a rather poor substrate compared with the (S)-enantiomer; it was only partially metabolized (Scheme 4) yielding a mixture of cis-

diol 16 (36\%), keto alcohol 17 (27\%) and recovered substrate (27\%). This sample of metabolite 17 was found to have identical absolute stereochemistry to that isolated from 1,2-dihydrobenzocyclobutene 12 .
The formation of different metabolites from enantiomeric benzylic alcohols, i.e. alcohol (S)-13 \rightarrow triol 8 (Scheme 3), and alcohol (R)-13 \rightarrow diol 16 and keto alcohol 17 (Scheme 4), has also been observed during earlier metabolism studies using P. putida UV4, where a much stronger preference for triol formation was noted when (S)-3-hydroxy-2,3-dihydrobenzofuran was used as the substrate compared with the (R)-enantiomer. ${ }^{15}$
When the angular cis-monohydrodiol ($1 \mathrm{R}, 2 \mathrm{~S}$)-7 was used as a substrate, no evidence of triol 8 (or other metabolites) was found. This observation supports the view that triol 8 was being formed via the metabolic sequence $\mathbf{1 2 \rightarrow 1 3 \rightarrow 8}$. The hydroxy ketone 17 was isolated as a metabolite when either cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16 or 1,2-dihydro-benzocyclobuten-1-one 15 were used as substrates. The metabolic pathway involved in the formation of compound 17 from 1,2-dihydrobenzocyclobutene 12 remains unclear. Either sequence $\mathbf{1 2 \rightarrow \mathbf { 1 3 }} \boldsymbol{\mathbf { 1 6 }} \boldsymbol{\mathbf { 1 7 }}$ or $\mathbf{1 2 \rightarrow \mathbf { 1 3 } \rightarrow \mathbf { 1 5 } \rightarrow \mathbf { 1 7 } \text { (or a combin- }}$ ation of both) may be applicable.
From these studies with the bacterium P. putida UV4, employing a range of substrates, it is evident that three metabolites of 1,2-dihydrobenzocyclobutene 12, i.e. (S)-1,2-dihydro-benzocyclobuten-1-ol 13, (1R ,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7 and (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14, may be considered as primary products. However, 1,2-dihydrobenzocyclobuten-1-one 15, cis-1,2-dihydroxy-1,2dihydrobenzocyclobutene 16 and ($1 \mathrm{~S}, 2 \mathrm{~S}, 8 \mathrm{~S}$)-bicyclo[4.2.0]-octa-3,5-diene-1,2,8-triol 8 appear to be secondary metabolites derived from 1,2-dihydrobenzocyclobuten-1-ol 13. The only identified tertiary metabolite was 2-hydroxybenzocyclobuten-1one $\mathbf{1 7}$ which could be derived from either of the secondary metabolites cyclobutanone $\mathbf{1 5}$ or cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16 .
The TDO-catalysed metabolism of 1,2-dihydrobenzocyclobutene 12, in P. putida UV4, was much more complex than previously observed with other members of the benzocycloalkene series containing five, six- and seven-membered rings,

Fig. 5 A projection of molecule 32
where mainly benzylic oxidation products (benzylic alcohols and ketones) were found. ${ }^{8}$ It would appear that when the ring size is sufficiently small the dioxygenase enzyme can accept and metabolize the substrate in a manner similar to orthodisubstituted arenes i.e. yielding cis-diol metabolites. It has recently been reported ${ }^{16}$ that naphthal ene dioxygenase (N D O)catalysed oxidation of 1,2-dihydrobenzocyclobutene 12, in growing cultures of P seudomonas fluorescens, yielded racemic 1,2-dihydrobenzocyclobuten-1-ol 13 and 1,2-dihydrocyclo-buten-1-one 15 as the only metabolites.
A single metabolite was isolated when biphenylene 33 was added to P. putida UV 4 cultures. This product was identified as cis-monodihydrodiol $9\left([a]_{\mathrm{D}}+429\right)$ on the basis of its spectral and chromatographic characteristics (Scheme 5). The absence

of coupling between the orthogonal protons $1-\mathrm{H}$ and $2-\mathrm{H}$ in cis-diol 9 , as was found for protons $2-\mathrm{H}$ and $3-\mathrm{H}$ in diol 7 and triol 8, was characteristic of the angular cis-monohydrodiol moiety. Synthesis of the di-M TPA derivatives 31 allowed the enantiomeric excess ($>98 \%$ ee) to be determined.
The di-M TPA esters 31 proved difficult to crystallize. However, the dicamphanate derivative $32\left([a]_{D}-70\right)$ provided a suitable crystal for X-ray structure analysis (Fig. 5) and the absolute configuration of metabolite $9\left([a]_{\mathrm{D}}+429\right)$ was established as ($15,8 \mathrm{bR}$). In diester 32 the equatorial group on $\mathrm{C}-1$ and the axial group on $\mathrm{C}-8 \mathrm{~b}$ are cis and the diene $\mathrm{C}^{2}=\mathrm{C}^{3}-\mathrm{C}^{4}=\mathrm{C}^{4 a}$ has helicity M with torsion angle $\tau=-19^{\circ}$. Individual molecules of ester 32 adopt thesame conformation, including that of the camphanate groups, as ester $\mathbf{2 7}$ but the molecular packing differs, leading to a different lattice. Recent studies ${ }^{17}$ of the bacterial oxidation of biphenylene 33, using a carbazole dioxygenase (CDO) as biocatalyst, have shown that the isolated cismonohydrodiol metabolite 9 was of opposite absolute configuration, ($1 \mathrm{R}, 8 \mathrm{bS}$), to that found in this study using TDO. Formation of cis-monohydrodiol 9 , using either the TDO or CDO enzymes, provides the first example of enantiocomple-
mentarity during dioxygenase-catalysed cis-dihydroxylation of arenes. Similar examples, supporting this concept, have recently been reported during TDO- and NDO-catalysed benzylic hydroxylation, ${ }^{18}$ alkene cis-dihydroxylation ${ }^{19,20}$ and sulfoxidation. ${ }^{21,22}$ The absolute configuration of each of the three stable angular cis-monohydrodiols 7, 8 and 9, obtained by TDOcatalysed oxidation, was identical and is consistent with a similar orientation within the active site of the enzyme. Since either enantiomer of the angular cis-diol 9 may be formed using TDO or CDO systems, in the absence of information about the dioxygenase type, it is difficult to predict the absolute configuration of other angular cis-diol metabolites.

Experimental

1,2-Dihydrobenzocyclobutene $\quad 12,{ }^{11} \quad$ 1,2-dihydrobenzocyclo-buten-1-ol 13^{11} and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16^{12} were synthesised by the literature procedures. Biphenylene 33 was obtained from the Aldrich Chemical Company. Substrates 12, $(+)-13,(-)-13,(\pm)-13$ and 33 were each metabolized using growing cultures of P seudomonas putida UV4 according to the reported method. ${ }^{23}$ The bioproducts were harvested by solvent extraction (EtOAc) of the sodium chloride-saturated aqueous solution containing the biotransformed material, and concentration of the combined extracts under reduced pressure $A^{1} H N M R$ spectrum of the crude mixture of bioproducts, obtained from each run, was routinely examined prior to any purification procedure.
${ }^{1} \mathrm{H}$ NMR Spectra of compounds were recorded using General Electric QE 300, GN $\Omega-500$, and Bruker WP400 instruments using CDCl_{3} as solvent. Coupling constants J are quoted in $\mathrm{Hz} . \mathrm{M}$ ass spectra were recorded at 70 eV on a AEIM S902 spectrometer updated by VG Autospec Instruments. Elemental microanalyses were performed on a Perkin-Elmer 2400 CHN microanalyser. A ccurate molecular weights were determined by the peak matching method, using perfluorokerosene as standard reference Flash chromatography and PLC were performed on M erck K ieselgel type 60 (250-400 mesh) and $\mathrm{PF}^{254 / 366}$ respectively. M erck K ieselgel $60 \mathrm{~F}_{254}$ analytical plates were used for normal TLC. Optical rotation ($[a]_{\mathrm{D}}$) measurements were carried out with a Perkin-EImer 214 polarimeter at ambient temperature (ca. $20^{\circ} \mathrm{C}$) at a concentration of 0.005 g cm^{-3} and are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Circular dichroism (CD) spectra were recorded on a JA SCO J 720 instrument in acetonitrile solvent.

M etabolism of 1,2-dihydrobenzocyclobutene 12
The crude mixture of products, obtained from the biotransformation of 1,2-dihydrobenzocyclobutene 12 ($0.6 \mathrm{~g}, 5.7 \mathrm{mmol}$) over 24 h , was separated into five bands by PLC [EtOA chexane (1:1)]. 1,2-D ihydrobenzocyclobuten-1-one 15 was isolated as an oil ($0.014 \mathrm{~g}, 2 \%$), $\mathrm{R}_{\mathrm{f}} 0.90 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 4.00(2 \mathrm{H}, \mathrm{s}$, 1-H, 2-H) and 7.36-7.55 (4H, m, Ar-H). It was spectrally indistinguishable from an authentic sample
(-)-(2R)-1-0 xo-2-hydroxy-1,2-dihydrobenzocyclobutene 17 ($0.008 \mathrm{~g}, 1 \%$), $\mathrm{R}_{\mathrm{f}} 0.80, \mathrm{mp} 64-66^{\circ} \mathrm{C}$ (from hexane-isopropyl alcohol); $[a]_{\mathrm{D}}-36\left(\mathrm{CHCl}_{3}\right)$ (Found: M^{+}, 134.0367. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{2}$ requires $\mathrm{M}, 134.0368$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 5.82$ (1 H , s, $2-\mathrm{H}$) and $7.30-$ $7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 134\left(\mathrm{M}^{+}, 24 \%\right)$ and 105 (100); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1758(\mathrm{C}=0)$ and $3608(\mathrm{OH}) ; \mathrm{CD} \lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right) 340.6(3.39), 289.4(-6.98)$ and $282.2(-3.46)$. The enantiopurity of metabolite 17 ($[a]_{\mathrm{D}}-36$) was estimated to be 72% by CSPH PLC analysis [Chiralcel OB column; hexaneisopropyl alcohol ($9: 1$), $a=1.9$].
(-)-(1S)-1,2-D ihydrobenzocyclobuten-1-ol 13 ($0.228 \mathrm{~g}, 33 \%$), $R_{f} 0.75, \mathrm{mp} 56-58{ }^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{11} \mathrm{mp} 58{ }^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}-16$ $\left(\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 2.23(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.03\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,2^{2} 14.5\right.$, $\mathrm{J}_{2^{\prime}, 1} 1.6,2^{\prime}-\mathrm{H}$), $3.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2,2^{\prime}} 14.4, \mathrm{~J}_{2,1} 5.0,2-\mathrm{H}\right), 5.31(1 \mathrm{H}$, dd, J $\mathrm{J}_{1,2} 5.0, \mathrm{~J}_{1,2^{2}} 1.6,1-\mathrm{H}$) and $7.13-7.33$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). The enantiopurity of metabolite $\mathbf{1 3}\left([a]_{\mathrm{D}}-16\right)$ was estimated to be
ca. 20\% by CSPH PLC analysis [Chiralcel OB column; hexaneisopropyl alcohol (9:1), $a=2.1$].
A fourth band, $\mathrm{R}_{\mathrm{f}} 0.34$, contained a mixture of three compounds and the least polar component, cis-1,2-dihydroxy-1,2dihydrobenzocyclobutene 16, was isolated from the mixture by multiple elution PLC [EtOA c-hexane (1:4)], ($0.07 \mathrm{~g}, 9 \%$), mp $126-128{ }^{\circ} \mathrm{C}$ (from CHCl_{3}) (lit., ${ }^{24} \mathrm{mp} 127.5-128{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300$ $\mathrm{M} \mathrm{Hz}) 5.38$ ($2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$ and $2-\mathrm{H}$) and 7.35 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).
The remaining low R_{f} mixture was separated into ($1 R, 2 S$)-bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7, and (2R,3S)-bicyclo-[4.2.0]octa-1(6),4-diene-2,3-diol 14 by semi-preparative reversed-phase HPLC [Zorbax ODS column, $9.4 \times 250 \mathrm{~mm}$; $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (7:3), $a=1.9$].
(-)-(1R,2S)-Bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7 was isolated from the first fractions ($0.143 \mathrm{~g}, 18 \%$), mp $235^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}-166\left(\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}, 138.0684$. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{M}, 138.0681$); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 2.15(2 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}$), 2.70 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 3.16 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 4.63 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $5.65\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{3.4} 9.6,3-\mathrm{H}\right), 5.74\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{5.4} 4.6,5-\mathrm{H}\right)$ and 5.96 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{4,3} 9.6, \mathrm{~J}_{4,5} 4.3,4-\mathrm{H}$); m/z $138^{(} \mathrm{M}^{+}, 4 \%$) and 120 ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 73$); CD $\lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 269$ (-4.85) and $226(-1.15)$. The enantiomeric excess of diol 7 was determined as $>98 \%$ by ${ }^{1} \mathrm{H} N \mathrm{MR}$ analysis of the mono-M TPA ester derivatives 26 which showed diagnostic MeO singlets at $\delta 3.60$ [(R)-M TPA] and 3.53 [(S)-M TPA].
(-)-(2R ,3S)-Bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 was isolated from the second fraction as an unstable solid (0.10 g , $13 \%) ;[a]_{\mathrm{D}}-16\left(\mathrm{CHCl}_{3}\right)$ (Found: M^{+}, 138.0685. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{M}, 138.0681)$; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 2.63(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.70$ ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 2.80 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 4.06 ($1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{2,3} 6.5,2-\mathrm{H}$), 4.44 ($1 \mathrm{H}, \mathrm{m}, \mathrm{J}_{3,5} 2.2,3-\mathrm{H}$), $5.75\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5.4} 9.6, \mathrm{~J}_{5,3} 2.2,5-\mathrm{H}\right.$) and 5.86 ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{4,5} 9.6, \mathrm{~J}_{4,3} 2.2,4-\mathrm{H}$); m/z $138\left(\mathrm{M}^{+}, 90 \%\right)$ and 120 $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 39\right) ; \mathrm{CD} \lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 268(-2.46)$, $215(-1.41)$ and $199.8(-1.48)$. The enantiopurity of diol 14 was determined as $>98 \%$ by ${ }^{1} \mathrm{H}$ N M R analysis of the di-M TPA ester derivatives 29 of the triazolinedione adduct 28 which showed characteristic MeO singlets at $\delta 3.08$ and $3.56[(\mathrm{R})$ M TPA, 29a], or $\delta 3.16$ and 3.46 [(S)-M TPA, 29b].

The most polar band ($\mathrm{R}_{\mathrm{f}} 0.09$) contained a single compound which was identified as $(-)$-($1 \mathrm{~S}, 2 \mathrm{~S}, 8 \mathrm{~S}$)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol $8(0.08 \mathrm{~g}, 9 \%)$, $\mathrm{mp} \mathrm{118-119}{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[a]_{\mathrm{D}}-197\left(\mathrm{CHCl}_{3}\right)$ (Found: C, 61.8; $\mathrm{H}, 6.2 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C $62.3 ; \mathrm{H}, 6.5 \%)$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 2.92(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.17(1 \mathrm{H}, \mathrm{m}$, $\left.7^{\prime}-\mathrm{H}\right), 4.17$ ($1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{8,7^{\prime}}=\mathrm{J}_{8,7} 7.1,8-\mathrm{H}$), $4.53(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.58$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4} 9.6,3-\mathrm{H}$), 5.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,4} 3.2,5-\mathrm{H}$) and 5.86 (1 H , dd, J $\left.{ }_{4,3} 9.6, J_{4,5} 3.2,4-\mathrm{H}\right) ; \mathrm{m} / \mathrm{z} 136\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 24 \%\right) ; C D$ $\lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) 273(-5.43)$ and $226(-1.05)$. The enantiopurity of triol 8 was determined as $>98 \%$ by ${ }^{1} \mathrm{H}$ NM R analysis of the di-M TPA ester derivatives 30 which showed characteristic M eO singlets at $\delta 3.50$ and 3.54 [(R)-M TPA], or $\delta 3.33$ and $3.36[(S)-M$ TPA].

Separation of (+)-(R)- and (-)-(S)-1,2-dihydrobenzocyclobuten-

 1-ol 13 by CSPH PLCRacemic 1,2-dihydrobenzocyclobuten-1-ol $\mathbf{1 3}^{11}(0.2 \mathrm{~g})$ was separated into pure enantiomers using a Chiralcel OB semipreparative H PLC column [$9.4 \times 250 \mathrm{~mm}$; isopropyl alcoholhexane ($10: 90$), 0.01 g injections, $a=2.1]$. The first isomer to elute was (-)-(S)-13, mp $57-59^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-88\left(\mathrm{CHCl}_{3}\right)$. The later eluting isomer was (+)-(R)-13, $\mathrm{mp} 58-60^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+88$ (CHCl_{3}).

M etabolism of (+)-(R)-1,2-dihydrobenzocyclobuten-1-ol 13

A n enantiopure sample of $(+)-(R)-13(0.1 \mathrm{~g})$ was metabolised over a 24 h period, using P. putida UV4 under standard conditions, and the aqueous extracts were worked up by the normal procedure. PLC Separation of the crude mixture of bioproducts gave cis-diol 16 (0.04 g) and 1-oxo-2-hydroxy-1,2dihydrobenzocyclobutene 17 (0.01 g), which were identical to the samples obtained from biotransformation of 1,2-dihydro-
benzocyclobutene 12. (R)-1,2-D ihydrobenzocyclobuten-1-ol 13 $(0.03 \mathrm{~g})$ was also recovered.

M etabolism of (-)-(S)-1,2-dihydrobenzocyclobuten-1-ol 13

A n enantiopure sample of $(-)-(\mathrm{S})-13(0.1 \mathrm{~g})$ was metabolized and the products isolated in a similar manner to the metabolites of the $(+)$-(R)-enantiomer 13. 1,2-D ihydrobenzocyclobuten-1one $15(0.06 \mathrm{~g})$ and triol $8(0.02 \mathrm{~g})$ were isolated and found to be identical in all respects to the samples isolated from metabolism of 1,2-dihydrobenzocyclobutene 12 .

M etabolism of biphenylene 33

The crude product, extracted from the biotransformed substrate 33 ($0.1 \mathrm{~g}, 6.5 \mathrm{mmol}$) appeared to contain only one metabolite which was identified as $1,8 \mathrm{~b}$-dihydrobiphenylene-cis-1,8b-diol 9 after purification by PLC [EtOA c: hexane(1:1)], ($0.08 \mathrm{~g}, 66 \%$), mp $119-121^{\circ} \mathrm{C}$ (from CHCl_{3}); $[a]_{\mathrm{D}}+429$ (MeOH) (Found: M^{+}, 186.1686. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}$ requires M , 186.1681); $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 4.62$ ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.81 (1H, dd, J ${ }_{2,3}$ 9.3, J.4 $1.6,2-\mathrm{H}$), 6.07 (1 H , dd , J $\mathrm{J}_{2,2} 1.6, \mathrm{~J}_{4,3} 4.4,4-\mathrm{H}$), 6.16 (1 H , dd, $\mathrm{J}_{3,4} 4.4, \mathrm{~J}_{3,2} 9.3,3-\mathrm{H}$) and 7.30-7.46 (4H , m, Ar-H); m/z 186 $\left(\mathrm{M}^{+}, 42 \%\right)$ and $168\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$; CD $\lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right) 325(+1.86), 227(-2.9)$ and $200(-3.1)$. Conversion of the cis-diol $9\left([a]_{\mathrm{D}}+429\right)$ to the di-M TPA derivatives 31 and subsequent ${ }^{1} \mathrm{H}$ N M R analysis allowed the ee value to be determined ($>98 \%$) from the characteristic MeO singlets at $\delta 3.45$ and 3.65 [(R)-M TPA], or $\delta 3.30$ and 3.66 [(S)-M TPA].

A ssignment of relative and absolute configuration of metabolites and derivatives

(i) C onversion of (-)-(S)-1,2-dihydrobenzocyclobuten-1-ol 13 to (-)-(2S)-dimethyl acetoxysuccinate 22

The metabolite 1,2-dihydrobenzocyclobuten-1-ol 13 ($[a]_{D}$ $-16 ; 0.4 \mathrm{~g}, 3.3 \mathrm{mmol}$), on treatment with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine, gave the acetoxy derivative 18 ($0.320 \mathrm{~g}, 60 \%$), bp $130-133^{\circ} \mathrm{C} / 3$ mmH g (lit., ${ }^{11}$ bp $80-84^{\circ} \mathrm{C} / 1.5 \mathrm{mmH}$ g), $[a]_{\mathrm{D}}-8.2\left(\mathrm{CHCl}_{3}\right)$. To a solution of the acetate $\mathbf{1 8}\left([a]_{\mathrm{D}}-8.2 ; 0.2 \mathrm{~g}, 1.2 \mathrm{mmol}\right)$ in $\mathrm{CCl}_{4}(5$ $\left.\mathrm{cm}^{3}\right)$, was added $\mathrm{CH}_{3} \mathrm{CN}\left(5 \mathrm{~cm}^{3}\right)$, water ($7 \mathrm{~cm}^{3}$), $\mathrm{NalO}_{4}(7 \mathrm{~g})$ and a catalytic amount (ca. 0.001 g) of ruthenium(iv) oxide hydrate. The reaction mixture was stirred at room temperature (72 h), treated with hydrochloric acid ($20 \mathrm{~cm}^{3} ; 1.5 \mathrm{~m}$) saturated with NaCl , and then extracted with EtOAc $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The ethyl acetate extract was washed with saturated aqueous NaCl ($30 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent distilled off under reduced pressure to yield an oily residue of acetoxysuccinic acid $20(0.12 \mathrm{~g}, 57 \%)$. The ${ }^{1} \mathrm{H}$ N M R spectrum of this sample was consistent with structure 20 and the sample was used without further purification. A solution of the crude acetoxysuccinic acid $20(0.1 \mathrm{~g})$ in methanol $\left(1 \mathrm{~cm}^{3}\right)$ was reacted $\left(4 \mathrm{~h}, 0^{\circ} \mathrm{C}\right)$ with an excess of an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$. The solvents and excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ were removed with a stream of nitrogen and the residue purified by column chromatography (hexane-EtOAc) to give (-)-(2S)-dimethyl acetoxysuccinate 22 as a colourless oil ($0.08 \mathrm{~g}, 73 \%$), bp $90-94^{\circ} \mathrm{C} / 3 \mathrm{~mm} \mathrm{Hg} ;[]_{\mathrm{D}}-2.2\left(\mathrm{CHCl}_{3}\right)$ (Found: C, 47.0; H, 6.1. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{6}$ requires $\mathrm{C}, 47.1 ; \mathrm{H}$, $5.9 \%) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CM}\right.$ e), $2.91(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}_{1} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M}\right.$ e) and $5.48(1 \mathrm{H}$, dd, $J_{2,3}=J_{2,3} 6.0,2-H$). Comparison of the $[a]_{D}$ value (-2.2) of the latter sample of dimethyl acetoxysuccinate 22 with that of a sample synthesised from (S)-hydroxysuccinic acid 24 ($[a]_{\mathrm{D}}-18.2$), established an (S)-configuration for (-)-1,2-dihydrobenzocyclobuten-1-ol 13.

(ii) C onversion of cis-1,2-dihydrox y-1,2-dihydrobenzocyclobutene 16 to meso-dimethyl 2,3-diacetoxysuccinate 23

cis-1,2-D ihydroxy-1,2-dihydrobenzocyclobutene 16 ($0.1 \mathrm{~g}, 0.7$ mmol) was treated with an excess of acetic anhydride in dry pyridine using a method similar to that described for 1,2-dihydrobenzocyclobuten-1-ol 13, to afford cis-1,2-diacetoxy-

1,2-dihydrobenzocyclobutene 19. PLC Purification [diethyl ether-hexane (1:4)] gave compound 19 ($0.1 \mathrm{~g}, 83 \%$), bp $140^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$ (lit., ${ }^{24} 105-110^{\circ} \mathrm{C} / 0.4 \mathrm{mmH}$ g); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ $2.04(6 \mathrm{H}, \mathrm{s}, \mathrm{OCOM}$ e), $6.12(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$ and $2-\mathrm{H})$ and $7.22-7.32$ (4H, m, ArH).

Diacetate 19 ($0.16 \mathrm{~g}, 0.73 \mathrm{mmol}$) was subjected to oxidative cleavage ($\mathrm{RuO}_{2}-\mathrm{NaIO}_{4}$) using a similar procedure to that described for compound 18. Purification of the product by PLC [diethyl ether-hexane (2:3)] gave meso-dimethyl 2,3diacetoxysuccinate 23 ($0.15 \mathrm{~g}, 79 \%$), mp $97-99^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 45.6 ; \mathrm{H}, 5.4 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{8}$ requires $\mathrm{C}, 45.8 ; \mathrm{H}$, $5.4 \%) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 2.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CM}\right.$ e), $3.84\left(6 \mathrm{H}\right.$, s, C $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and 5.67 ($2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}, 3-\mathrm{H}$). Compound 23 was found to be spectrally and chromatographically indistinguishable from an authentic sample of meso-dimethyl 2,3-diacetoxysuccinate.
(iii) C onversion of (-)-(1R ,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2diol 7 to (-)-(1R,2S)-cis-1,2-bis $\{(3,7,7$-trimethyl-3-oxo-2-oxabicyclo[2.2.1] heptan-1-yl)carbonyloxy \}bicyclo[4.2.0]octa-3,5diene 27
The angular cis-monohydrodiol metabolite $7(0.05 \mathrm{~g}, 0.36$ $\mathrm{mmol}),[a]_{\mathrm{D}}-166\left(\mathrm{CHCl}_{3}\right)$, on reaction with (-)-(1S)-3-0xo-4,7,7-trimethyl-2-oxabicyclo[2.2.1]heptane-1-carbonyl chloride (camphanic chloride; $0.173 \mathrm{~g}, 0.8 \mathrm{mmol}$) in dry pyridine and subsequent PLC purification $\left[\mathrm{Et}_{2} \mathrm{O}\right.$-hexane ($70: 30$)] of the crude product gave colourless crystals of the dicamphanate 27 ($0.15 \mathrm{~g}, 83 \%$), mp $163-164{ }^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}-229$ $\left(\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 6.8 . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}$, $6.9 \%) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.95$ (3H, s, M e), 0.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 1.07 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), $1.66(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\text {cam }}\right), 1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {cam }}\right), 2.07\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{H}} \mathrm{H}_{\text {cam }}\right), 2.15(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\text {cam }}\right), 2.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {cam }}\right), 2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {cam }}\right), 5.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{2,3}\right.$ $9.8,3-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $6.02(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H})$; m/z 498 (M ${ }^{+}, 2.5 \%$), 120 (100).

X-R ay crystal structure analysis of compound 27

Crystal data. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8}, \mathrm{M}=498.6$. Orthorhombic, $\mathrm{a}=$ $31.593(7), \quad b=11.267(7), c=7.334(1) ~ \AA, V=2610.6(8) \AA^{3}$, $\lambda=0.71073 \AA$, space group $P 2_{1} 2_{2} 2(\mathrm{No.18}), Z=4, D_{\mathrm{x}}=1.268 \mathrm{~g}$ cm^{-3}. Colourless prisms, dimensions $0.96 \times 0.60 \times 0.57 \mathrm{~mm}$, $\mu(\mathrm{M} \mathrm{o-K} \alpha)=0.92 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=1064$

D ata collection and processing. Siemens P3 diffractometer, ω scan, scan width $1.0^{\circ}, 4<2 \theta<60^{\circ}$, h: $0 \rightarrow 44$, k: $0 \rightarrow 15$, l: $0 \rightarrow 10$; graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation; 4340 unique reflections measured giving 2258 with $\mathrm{I}>2 \sigma(\mathrm{I})$.
Structure analysis and refinement. Direct methods (SHELXS86). ${ }^{25}$ F ull-matrix least-squares refinement on F^{2} (SH ELXL-93) ${ }^{26}$ with all non-hydrogen atoms anisotropic and hydrogens in calculated positions using the riding model with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}$ (eq) for the attached atom. Final $\mathrm{R}_{1}=0.065$ (for 2258 data), $w R_{2}=0.269$ (all data), $G O F=0.84$, maximum residual electron density $0.17 \mathrm{e}^{\AA^{-3}}$. A projection of the molecule is shown in F ig. 1. \ddagger
(iv) C onversion of (-)-(2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 to (10R ,11S)-10,11-dihydroxy-2-phenyl-2,3,5,7,8,8a-hexahydro-1H -5,8a-ethanocyclobuta[c][1,2,4]triazolo[1,2-a] pyridazine-1,3-dione 28
To a stirring solution of cis-diol metabolite $14(0.02 \mathrm{~g}, 0.14$ mmol; $\left.[a]_{\mathrm{D}}-16\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added, dropwise, a solution of freshly sublimed 4-phenyl-1,2,4-triazoline-3,5-dione ($0.03 \mathrm{~g}, 0.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ at room temperature. U pon completion of the reaction (ca. 3 h), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evapor-
\ddagger A tomic coordinates, thermal parameters and bond length and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for A uthors, J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1. A ny request to the CCD C for this material should quote the full literature citation and the reference number 207/110.
ated off and the resulting crude product was purified by PLC (EtOAc) to give (10R,11S)-10,11-dihydroxy-2-phenyl-2,3,5,7,8,8a-hexahydro-1H -5,8a-ethanocyclobuta[c][1,2,4]tri-azolo[1,2-a]pyridazine-1,3-dione 28 ($0.03 \mathrm{~g}, 66 \%$), mp 171$172{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-hexane); $[a]_{\mathrm{D}}+2$ (pyridine) (Found: $\mathrm{C}, 60.9 ; \mathrm{H}$, 4.5; $\mathrm{N}, 13.3 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.3 ; \mathrm{H}, 4.8 ; \mathrm{N}, 13.4 \%$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 2.70(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.10(1 \mathrm{H}$, m, 7-H), 3.25 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 3.92 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{11,10} 8.2, \mathrm{~J}_{11,5} 2.2,11-$ H), 4.03 (1H , d, J ${ }_{10,11} 8.2,10-\mathrm{H}$), 4.88 ($1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{5,11} 2.2, \mathrm{~J}_{5,6} 5.6$, $5-\mathrm{H}), 5.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,5} 5.6,6-\mathrm{H}\right)$ and $7.26-7.47(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\mathrm{m} / \mathrm{z} 313\left(\mathrm{M}^{+}, 20 \%\right)$ and 253 (100).

C onversion of compound 28 to (10R,11S)-10,11-di-[(R)methoxytrifluoromethylphenylacetoxy $\}$ 2-phenyl-2,3,5,7,8,8a-hexahydro-1H -5,8a-ethanocyclobuta[c][1,2,4]triazolo[1,2-a]-pyridazine-1,3-dione 29a

A solution of cycloadduct $\mathbf{2 8}(0.01 \mathrm{~g}, 0.03 \mathrm{mmol})$ in dry pyridine ($0.5 \mathrm{~cm}^{3}$) containing 4-dimethylaminopyridine (0.005 g) was treated with (+)-M TPA chloride ($0.018 \mathrm{~g}, 0.07 \mathrm{mmol}$ derived from R-M TPA). The mixture was heated at $55^{\circ} \mathrm{C}$ for 36 h . Pyridine was removed under reduced pressure from the reaction mixture, by forming an azeotrope with toluene. The residue was purified by PLC $\left[\mathrm{M} \mathrm{eOH}: \mathrm{CHCl}_{3}(2: 98)\right]$ to afford the di-M TPA ester 29a ($0.014 \mathrm{~g}, 60 \%$), mp 150-152 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ hexane); $[a]_{\mathrm{D}}+16\left(\mathrm{CHCl}_{3}\right)$ (Found: C, 58.0; H, 3.7; N, 5.9. $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $\left.58.0 ; \mathrm{H}, 3.9 ; \mathrm{N}, 5.6 \%\right) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}$) $2.60(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.56 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.67 (2H , m, 7-H), 5.21 (1H , d, J $10,118.6,10-\mathrm{H}$), 5.25 (1H , dd, J ${ }_{5,11} 2.2, J_{5,6} 5.6,5-H$), 5.32 (1H , dd, J ${ }_{11,5} 2.2$, J 11,10 8.6, $11-\mathrm{H}$), $6.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{J}_{6.5} 5.6,6-\mathrm{H}\right)$ and $7.30-7.47(15 \mathrm{H}, \mathrm{m}$, Ar-H).

C onversion of compound 28 to (10R,11S)-10,11-di-[(S)-methoxytrifluoromethylphenylacetoxyf-2-phenyl-2,3,5,7,8,8a-hexahydro-1H -5,8a-ethanocyclobuta[c][1,2,4]triazolo[1,2-a]-pyridazine-1,3-dione 29b

Using (-)-M TPA-chloride (derived from S-M TPA) the cycloadduct 28 was esterified to yield the di-M TPA ester 29b, mp 139-140 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}+32\left(\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 57.8 ; \mathrm{H}, 3.9 ; \mathrm{N}, 5.9 . \mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, 57.8; H, 3.9; $\mathrm{N}, 5.6 \%) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 2.84(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.05(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$, $8-\mathrm{H}), 3.16$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.76 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 5.13 (1H , dd, J ${ }_{5,11} 2.3, J_{5,6} 5.3,5-H$), 5.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{11,10} 8.6, \mathrm{~J}_{11,5}$ 2.3, 11-H), 5.51 ($1 \mathrm{H}, \mathrm{d}^{2}, \mathrm{~J}_{10,11} 8.6,10-\mathrm{H}$), $6.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{J}_{6,5} 5.3\right.$, $6-\mathrm{H}$) and 7.31-7.56 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).

X-R ay crystal structure analysis of compound 29b

Crystal data. $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{8}, \mathrm{M}=745.6$. Orthorhombic, $a=11.970(3), b=16.096(6), c=17.972(6) \AA, V=3463(2) \mathrm{A}^{3}$, $\lambda=0.71073 \AA$, space group $P 2_{1} 2_{1} 2_{1}(\mathrm{No.19}), \mathrm{Z}=4, \mathrm{D}_{\mathrm{x}}=1.43 \mathrm{~g}$ cm^{-3}. Colourless blocks, dimensions $0.93 \times 0.72 \times 0.65 \mathrm{~mm}$, $\mu(\mathrm{M} \mathrm{o-K} \alpha)=1.22 \mathrm{~cm}^{-1}$.

Data collection and processing. Siemens P3 diffractometer, ω scan, scan width $1.2^{\circ}, 3.5<2 \theta<56^{\circ}$, h: $0 \rightarrow 15$, k: $0 \rightarrow 21$, I: $0 \rightarrow 23$; graphite-monochromated Mo -K α radiation; 4664 unique reflections measured giving 2468 with $\mathrm{l}>2 \sigma(\mathrm{I})$.

Structure analysis and refinement. Direct methods (SHELXS86). ${ }^{25}$ Full-matrix least-squares refinement on F^{2} (SHELXL-93) ${ }^{26}$ with all non-hydrogen atoms anisotropic and hydrogens in calculated positions using the riding model with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}(\mathrm{eq})$ for the attached atom. Final $\mathrm{R}_{1}=0.057$ (for 2468 data), $\mathrm{wR}_{2}=0.138$ (all data), $\mathrm{GOF}=1.03$, maximum residual electron density 0.18 e \AA^{-3}. A projection of the molecule is shown in Fig. 2.

(v) (-)-(1S,2S,8S)-B icyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8

Triol $8\left([a]_{\mathrm{D}}-197, \mathrm{CHCl}_{3}\right)$ derived from the metabolism of (1S)-1,2-dihydrobenzocyclobuten-1-ol 13 was assigned a ($15,25,85$) configuration based on CD spectral comparison with (-)-(1R ,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2-diol 7 (Fig. 4).
(vi) C onversion of (+)-($15,8 \mathrm{bR}$)-1,8b-dihydrobiphenylene-cis-1,8b-diol 9 to (-)-(15,8bR)-cis-1,2-bis\{(4,7,7-trimethyl-3-ox0-2-oxabicyclo[2.2.1]heptan-1-yl)carbonyloxy \}biphenylene 32
Biphenylene-cis-diol 9 ($0.1 \mathrm{~g}, 0.54 \mathrm{mmol} ;[a]_{\mathrm{D}}+429$) was reacted with (-)-(1S)-camphanyl chloride ($0.25 \mathrm{~g}, 1.16 \mathrm{mmol}$) in dry pyridine ($1 \mathrm{~cm}^{3}$) at ambient temperature. PLC Purification [$\mathrm{Et}_{2} \mathrm{O}$-hexane ($70: 30$)] yielded the dicamphanate 32 as a white crystalline solid ($0.19 \mathrm{~g}, 65 \%$), mp $178-180^{\circ} \mathrm{C}(\mathrm{MeOH}-$ $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}$), $[a]_{\mathrm{D}}-72\left(\mathrm{CHCl}_{3}\right)$ (Found: C, 70.2; H, 6.1. $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{8}$ requires C, 70.3 ; H , 6.3%); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.86$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e)}$, ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), $1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {cam }}$), 1.96 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {cam }}$), 2.35 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{cam}}\right), 2.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {cam }}\right), 5.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{2,3} 9.8,2-\mathrm{H}\right)$, 5.78 (1H, s, 1-H), 6.19 (1H, d, J 4.3 4.6, 4-H), 6.29 (1H, dd, J J.4 4.6, $\mathrm{J}_{3,2} 2.1,3-\mathrm{H}$) and 7.31-7.59 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$).

X-R ay crystal structure analysis of compound 32

C rystal data. $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{8}, \mathrm{M}=546.6$. M onoclinic, $\mathrm{a}=7.224(3)$, $\mathrm{b}=11.333(8), \mathrm{c}=17.854(12) \AA, \beta=98.65(4)^{\circ}, \mathrm{V}=1445(2) \AA^{3}$, $\lambda=0.71073 \AA$, space group $P 2_{1}(\mathrm{No.4}), Z=2, D_{x}=1.256 \mathrm{~g}$ cm^{-3}. Colourless blocks, dimensions $0.98 \times 0.92 \times 0.80 \mathrm{~mm}$, $\mu(\mathrm{Mo-K} \alpha)=0.90 \mathrm{~cm}^{-1}$.

Data collection and processing. Siemens P3 diffractometer, ω scan, scan width $2.0^{\circ}, 4<2 \theta<60^{\circ}, \mathrm{h}:-10 \rightarrow 10, k: 0 \rightarrow 15$, I: $0 \rightarrow 25$; graphite-monochromated $\mathrm{Mo-K} \alpha$ radiation; 3902 unique reflections measured giving 2809 with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Structure analysis and refinement. Direct methods (SHELXS86). ${ }^{25}$ Full-matrix least-squares refinement on F^{2} (SHELXL-93) ${ }^{26}$ with all non-hydrogen atoms anisotropic and hydrogens in calculated positions using the riding model with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}(\mathrm{eq})$ for the attached atom. Final $\mathrm{R}_{1}=0.090$ (for 2809 data), $\mathrm{wR}_{2}=0.251$ (all data), $\mathrm{GOF}=1.08$, maximum residual electron density 0.51 e \AA^{-3}. A projection of the molecule is shown in Fig. 5.

Acknowledgements

We thank Professor D. T. Gibson (U niversity of Iowa) for helpful comments on the manuscript, Dr A. F. Drake (Birbeck College, London) for assistance with the CD spectra, and the BBSRC (to N. D. S.) and the DED (to M. G.) for financial support.

References

1 D. T. Gibson, V. Subramanian, B. D. Ensley, W. Reineke and S. H. Safe, in M icrobial Degradation of Organic Compounds, ed. D. T. Gibson, D ekker, N ew York, 1984.

2 D. R. Boyd, M. R. J. Dorrity, M. V. Hand, J. F. M alone, N. D.

Sharma, H. D alton, D. J. G ray and G. N. Sheldrake, J. A m. Chem. Soc., 1991, 113, 666.
3 J. J. Frank and D. W. R ibbons, J. B acteriol., 1977, 129, 1356.
4 D. M. Jerina, P. J. van Bladeren, H. Yagi, D. T. Gibson, V. M ahadevan, A. S. N eese, M. K oreeda, N. D. Sharma and D. R. Boyd, J. Org. Chem., 1984, 49, 3621.

5 D. R. Boyd, N. D. Sharma, R. A garwal, D. M. Jerina, S. M. Resnick, J. M. Sayer, H. Yagi, M. J. Schocken and D. T. Gibson, J. Chem. Soc., Perkin Trans. 1, 1997, 1715.

6 K. H. Engesser, V. Strubel, K. Christoglou, P. Fischer and H. G. R ast, FEM S M icrobiol. Lett., 1989, 65, 205.
7 S. T. Trenz, K. H. Engesser, P. Fischer and H.-J. K nackmuss, J. Bacteriol., 1994, 789.

8 D. R. Boyd, N. D. Sharma, P. J. Stevenson, J. Chima, D. J. Gray and H . D alton, Tetrahedron Lett., 1991, 32, 3887.
9 S. A. Selifonov, M. Grifoll, J. E. Gurst and P. J. Chapman, Biochem. Biophys. Res. Commun., 1993, 193, 67.
10 L. M onna, T. Omori and T. K odama, Appl. Environ. M icrobiol., 1993, 59, 285.
11 W. A. Bubb and S. Sternhell, A ust. J. Chem., 1976, 29, 1685.
12 M. P. Cava and K. M uth, J. A m. Chem. Soc., 1960, 82, 652.
13 D. R. Boyd, N. D. Sharma, S. A. Barr, H. D alton, J. Chima and G. M . Whited, J. A m. C hem. Soc., 1994, 116, 1147.

14 D. R. Boyd, J. Blacker, B. Byrne, H. Dalton, M. V. Hand, S. K elly, R. A. M ore O'Ferrall, S. N. Rao, N. D. Sharma and G. N. Sheldrake, J. C hem. Soc., C hem. C ommun., 1994, 313.
15 D. R. Boyd, N. D. Sharma, R. Boyle, J. F. M alone, J. Chima and H. D alton, Tetrahedron: A symmetry, 1993, 4, 1307.

16 P. E. Swanson, A ppl. Environ. M icrobiol., 1992, 58, 3404.
17 S. M. Resnick, D. S. Torok and D. T. Gibson, J. Org. Chem., 1995, 60, 3536.
18 L. P. Wackett, L. D. K wart and D. T. G ibson, B iochemistry, 1988, 27, 1360.

19 C. C. R . A llen, D. R . B oyd, H . D alton, N. D. Sharma, I. Brannigan, N. A . K erley, G. N. Sheldrake and S. C. Taylor, J. C hem. Soc., C hem. Commun., 1995, 117.
20 S. M. Resnick, K. Lee and D. T. Gibson, J. Ind. M icrobiol., 1996, 17, 438.
21 C. C. R. Allen, D. R. Boyd, H. Dalton, N. D. Sharma, S. A. H aughey and K. Sproule, J. Chem. Soc., Chem. Commun., 1995, 119.

22 K. Lee, J. M. Brand and D. T. Gibson, Biochem. Biophys. Res. C ommun., 1995, 212, 9.
23 D. R. Boyd, M. R. J. D orrity, J. F. M alone, R. A. S. M cM ordie, N. D. Sharma, H. D alton and P. Williams, J. Chem. Soc., Perkin Trans. 1, 1990, 489.
24 H. N ozaki, R. N oyori and N. K ozaki, Tetrahedron, 1964, 20, 641.
25 G. M. Sheldrick, SH EL X S-86, A cta C rystallogr., Sect. A, 1990, 46, 467.

26 G. M. Sheldrick, SHELXL-93, Program for crystal structure refinement, U niversity of G öttingen, 1993.

Paper 6/08071E
Received 28th N ovember 1996
A ccepted 11th M arch 1997

[^0]: † Also described as 'benzocyclobutene' in the literature

